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ABSTRACT

The fluorescence yield of N0 2 was monitored at 250C with incident

wavelengths of 4047, 4358, and 4800A at fluorescence wavelengths of 4860,

5577, and 6300A. The N02 pressure was varied between 0.004 and 0.080

torr. Measurements were taken both in the absence of foreign-gases and

in the presence of up to 30 torr He, N2, and 02 at each NO2 pressure.

In the absence of foreign gases, the self quenching follows a Stern-

Volmer quenching mechanism, but foreign-gas quenching shows marked

deviations from this mechanism. Both from lifetime and kinetic consid-

erations, it is argued that the electronic state formed by absorption

of the radiation cannot be the emitting state. Emission occurs from

several vibrational levels of the emitting state, the various vibrational

levels being formed by collisional cascade reactions. The appropriate

quenching rate constant ratios have been measured and tabulated. Even

the two electronic state mechanism is insufficient to explain all the

observations.
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INTRODUCTION

The fluorescence of gaseous NO 2 has been the subject of several

studies, with neither the experimental results not the explanations always

in agreement. In 1929 Norrishl 'reported a dependence of the emission

spectrum on the wavelength of the incident radiation, Ai. This result

was not supported by the subsequent work of Neuberger and Duncan.2

These authors observed the same radiative lifetime of T = 4.4 x 10- 5 sec

for three different Xi (3950, 4300, and 4650A). This value was more than

two orders of magnitude larger than that of 2.6 x 10- 7 sec calculated by

the same authors from the integrated extinction coefficient using the

absorption coefficient curves of Hall and Blacet3 and of Dixon.4 To

account for the anomaly, Neuberger and Duncan proposed the participation

of two electronic states, one absorbing and the other emitting the radia-

tion.

In 1966, Douglas5 proposed four different mechanisms, which may

account for the anomalous lifetimes found not only in the NO2 case, but

also in the SO2 and CS2 cases. In all four mechanisms only one excited

electronic state was considered and, according to the author,-the most

likely explanation for the long radiative lifetime of NO 2 is the inter-

action of the excited electronic state with the upper vibrational levels

of the ground state.

As for the quenching of the fluorescence, Baxter6 measured relative

quenching efficiencies of several gases in 1930. In 1965 Myers, Silver,

and Kaufman7 studied the relative efficiencies of 13 different gases.

These authors found linearity in the Stern-Volmer plots for pressures of

NO2 ranging from 5 to 30 mtorr. They did not report the range of pressures

of added gases used in the experiments. They also found a dependence of



the Stern-Volmer quenching constants on the wavelengths of both the

exciting and fluorescent radiation. Furthermore the fluorescence spectrum

showed a red shift at high quenching pressures, indicating that some

vibrational quenching was occurring prior to fluorescence.

In a more recent paper, Keyser, Levine, and Kaufman8 measured the

radiative lifetime of the excited NO2 using a phase shift method. In this

case they found a curvature in the self-quenching Stern-Volmer plots at

low NO2 pressures, the curvature increasing with the separation between

the incident wavelength, Xi, and the emitted wavelength, Af. To explain

their results they suggested a cascade model with stepwise vibrational

deactivation in a single excited electronic state, concurrent with its

electronic and radiative deactivation. They found the radiative lifetime

to be 5.5 x 10 - 5 sec independent of exciting wavelength. They accepted

the Douglas model to explain the long lifetime, and thus excluded the

participation of more than one electronically excited state.

Schwartz and Johnston9 had also examined the radiative lifetime by

a phase shift method and had found similar results, the only difference

being a slight dependence of the radiative lifetime (5.5 x 10- 5 to

9 x 10 - 5 sec) on the incident radiation. Schwartz and Johnston also

accepted the single electronic state mechanism for absorption and emission.

In 1969, Sakurai and Broidal° studied the fluorescence of NO2 using

several different incident wavelengths from a laser source. They found

that the extinction coefficients were proportional to,the NO2 pressure

at all wavelengths. They argued that the earlier measurements3 '4 of

large extinction coefficients were unreliable for this reason, as well

as possible failure to correct for instrument slitwidth, and estimated the

lifetime, based on the integrated absorption coefficient to be about



10- 5 sec, in approximate agreement with the radiative lifetime. They

also accepted the one electronic state mechanism and explained the effect

of NO2 pressure on the fluorescence intensity in terms of vibrational

deactivation.

In 1971, calculations on the electronic structure of the-ground and

excited states of NO2 were done by two different research groups, Fink"1

in California and Gangi and Burnelle1
2 ,13 in New York. Fink concluded

that the explanation of the visible spectrum of NO 2 requires a treatment

which considers the simultaneous perturbation of the rotational-vibrational

levels of at least three different electronic states.

Gangi and Burnellel3 suggest that absorption of light at wavelengths

between 4000 and 6000A is mainly from the ground 2Ai state to-the-second

excited 2B2 state. They compute the radiative lifetime for the unperturbed

2B2 state to be 0.1248 x 10- 6 sec, similar to the value computed by

Neuberger and Duncan.2 Thus if emission is from 2B2, it must be mixed

with lower electronic states as suggested by Douglas 5 to account for the

long lifetime. Gangi and Burnelle accepted this hypothesis, but-point out

that 2B2 could interconvert to the lower lying 2B1 state, and that some

emission could be coming from that state. Furthermore for incident

radiation above %6000A, there is insufficient energy to populate 2B2,

and 2B1 presumably is being excited directly.

There is direct experimental evidence relating to the symmetry of the

absorbing and emitting electronic states. Douglas and Huber 1 4 have shown

that the 2B1 state is responsible for the discrete absorption bands in

the region from 3700 - 4600A, though Sackett and Yardley z
5 have shown that

the 2B2 state also absorbs at 4515 - 4605A, and that this absorption is

more pronounced than that to 2B1. Abe et a11 6 demonstrated that emission



is from a single vibrational level of the 2B2 state when excitation is

at 5145A.

We present in this paper the results of the quenching of NO2

fluorescence by itself as well as by He, N 2, and 02. The incident wave-

lengths used were 4047, 4358, and 4800A. Emission was monitored at 4860,

5577, and 6300A. Contrary to the findings in Kaufman's laboratory, 7,8

we find marked deviation from linearity of the Stern-Volmer quenching

plots with the added gases. Presumably this is because we have; extended

the pressure range of the experiments. As a result we feel that our

findings preclude the possibility that the emitting and absorbing:states

are the same.
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EXPERIMENTAL

A conventional fluorescence system was used consisting of a mercury

free, grease free, high vacuum line, a dibutyl phthalate manometer, several

calibrated volumes providing known expansion ratios, and a fluorescence

cell. The T-shaped vessel, made from 7 cm i.d. Pyrex tubing, was 7 cm

long, with a 2.45 cm side arm extending 1 cm from the middle of the princi-

pal axis, and two 2.45 cm diameter openings, extending 0.5 cm from the ends.

Three 2.45 cm diameter sapphire windows (Harshaw Optical Crystals) were

sealed with Epoxy Resin to the three openings. Two different lamps were

used, a 2 00-watt high pressure mercury arc (Illumination Ind. Inc.) for

the 4047 and 4358A radiation, and a Hanovia 418C-9, 800-watt high pressure

xenon compact arc for the 4800A radiation. In every case the light was

collimated to a 0.5 cm cross section parallel beam, filtered through the

appropriate interference filter and then collimated to a conic beam by

means of a 10 cm focal length quartz lens placed in front of the reaction

vessel.

The following interference filters were used for the exciting

radiation: 4050/50A (Thin film products) and 4360/100A and 4800/100A

(Baird Atomic, Inc.). When the high pressure Xe arc was used a 10 cm

long, 5 cm i.d. quartz vessel filled with water was used to cool the

beam, in order to protect the interference filter.

The intensity of the incident beam was monitored with an RCA 935

photodiode placed after the reaction vessel, and a 1 mV recorder (Texas

Instruments) to measure the voltage drop across a known variable resistor.

Fluorescence was observed through the side arm of the cell. The following

combinations of interference filters and Corning sharp cutoff filters

were used in monitoring the emitted radiation at the different wavelengths,

to reduce the background light from the exciting source.
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4860/50A: Baird Atomic, Inc. interference filter plus Corning CS 3-72.

5577/15A: Thin Film Prod. interference filter plus either Corning

CS 3-73 when Xi was 4047A, or Corning CS 3-70 when Xi was 4358A.

6300/15A: Thin Film Prod. interference filter plus Corning CS 2-63.

The fluorescence signal was detected with a non-cooled EMI 9558B

photomultiplier. This tube has an S-20 response cathode, and was operated

at 1500V by means of a 402M John Fluke Power Supply.

The photomultiplier was wrapped with aluminum foil and then with a

Mu Metal Shield which was connected to the cathode terminal in order to

keep it at cathode potential to reduce the erratic noise. The photo-

multiplier was operated at a gain of 2 x 106 which gave a dark current of

3 x 10-11 amps. The output was amplified with a Keithley 410A picoammeter,

and displayed on a strip chart recorder (Texas Instruments). Fluorescence

signals were corrected for variations of the intensity of the exciting

beam, and for the background signal due to scattered light.

The NO2 (Matheson CO.) was purified by mixing it with 02 and then

distilling it through a -80°C (acetone) slush. The purified solid was

completely white and it was kept covered with black felt at all times.

The purity was checked by examining the color of the solid before each

run. When 4047A radiation was incident, only short exposures were used

to minimize photodecomposition.

The desired pressures of NO2 (about 0.004 to 0.08 torr) were obtained

by expansion in known volumes from measured pressures with the oil mano-

meter. Corrections were made for the NO2 - N204 equilibrium when necessary.

N2 (Matheson Co., Prep. Grade), 02 (Matheson Co., Extra Dry) and He

(Matheson Co., High Purity) were used without further purification.
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RESULTS

NO2 was excited by monochromatic steady illumination at three wave-

lengths. For each incident wavelength, Xi, the relative intensity of the

fluorescence was determined at different wavelengths, Xf, as a function

of NO2 pressure. The relative incident intensity was also monitored, and

the ratio Q, of relative fluorescence intensity, If,to relative incident

intensity, I o, was tabulated.

In order to keep the absorbed intensity, I a, small compared to Io,

pressures of NO2 < 0.080 torr were used. The lower limit of N02 pressure

used was 0.004 torr, in order to avoid the deviation from Stern-Volmer

quenching observed by others8'9 at lower pressures.

The simple Stern-Volmer mechanism involves excitation to a single

state followed by either fluorescence or collisional deactivation.

NO2 + hV + N0 2* Rate = Ia

NO 2 * + N02 + hV kf

N0 2 * + N0 2 + 2N02 kNo2

Since low N02 pressures were used, Ia = CIo[N02], where e is the extinction

coefficient. Furthermore let Q If/Io, so that the simple mechanism leads

to the expression

[N02]/Qo = C-l(1 + kN 20[NO2]/kf) I

where the subscript "o" on Q indicates the absence of added foreign gases.

Figures 1 and 2 show plots of [NO2]/Qo vs. [N02] for the seven com-

binations of incident and fluorescence wavelengths studied. In all

cases the data are well fitted by straight.lines, in agreement with the

findings of others8 '9 for [NO2] > 0.005 torr.

In the presence of a foreign gas, M, an additional reaction must

be added to the simple Stern-Volmer mechanism
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NO2* + M - NO2 + M kM

The effect of this reaction on the Stern-Volmer relative fluorescence

yield is given by the expression

QO/Q = 1 + kM[M]/(kf + kNO2[NO2]) II

where again Qo is the relative fluorescence yield in the absence of M

and Q is the relative fluorescence yield at the same NO2 pressure in the

presence of the foreign gas.

Equation II predicts that a plot of Qo/Q vs. [M] should be linear

at constant [NO2] for any incident and fluorescence wavelengths. Such

plots are shown for Xi = 4358A and Xf = 4860A for M = He, N2 , and 02,

respectively, in Figures 3, 4, and 5. It is clear that in all cases the

plots show marked curvature in the upward direction. Similar plots (not

shown) for all the other incident and fluorescence wavelengths show the

same curvature. Our results are in apparent disagreement with those of

Myers et al.7 who did not indicate any deviation from linearity, though

they did not report either their data or their pressure range. Presumably

the discrepancy can be attributed to the possibility that we have greatly

extended the pressure range of the quenching gases.

We find that straight-line plots can be obtained for the function

(Qo/Q-1)/[M] = a + S[M] III

where a and B are functions of Xi, Xf, and [NO2]. Plots of (Qo/Q-l)/[M]

vs. [M] are shown for He, N2 , and 02, respectively, in Figures 6, 7, and

8 for Xi = 4358A and Xf = 4860A. Only for [NO2] > 0.036 torr and M = He

is there any deviation from linearity, and then only above 10 torr of He.

Our experimental uncertainty in this range is quite large, and perhaps

this deviation is an experimental artifact. In any event, at the other

wavelengths of incidence and emission, none of the plots (not shown)
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deviated from linearity over the same pressure ranges (up to 10 - 30

torr of M). Values of a and B are listed in Table I.: Their dependence

on [NO2] is apparent, the values of both a and B decreasing as [NO2]

increases.
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Table I

Values of a and 8 in Eqn. III

a, trr torr torr 2

Xi, 4047A, Af = 5577A, M = He

5.5

4.8 6

3.7 2.82

2.9 0.67

2.7 0.33

2.3 0.28

Xi = 4047A, Af = 5577A, M = N2

9.2 15.25

8.1 3.14

6.5 1.56

5.4

3.4

3.2

i =

10

9

7.0

6.5

5.8

5.0

4.2

3.3

1.44

1.08

0.88

4047A, Af = 5577A, M = 02

32

22.3

14.3

6.3

2.0

1.76

1.28

1.0

103 [N02],
torr

8.7

21.5

39.2

46

56.7

70
*
-

5.3

19.4

,38.2

47.5

66.8

75.7

~/a, torr- 

1.25

0.76

0.23

0.122

0.122

1.66

0.39

0.24

0.27

0.32

0.28

3.2

2.48

2.04

0.97

0.35

0.35

0.3

0.3

4.2

7

14.3

19.8

29.3

38.5

47.3

66.4
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Table I: (continued)

a, torr-1 8, torr-2

Xi = 4047A, Xf = 6300A, M = He

13 5

10.4 2.6

8.0 0.2

4.8 0

3.8 0

Xi = 4047A, Xf = 6300A, M = N2

25 37.5

19 4.8

12.5 3.33

8.75

4.5

Xi =

18.2

13.8

10.5

8.0

7.5

4.5

Xi =

16.6a

11.8

5.0

2.5

1.21

0.06

4047A, Xf = 6300A, M = 02

10.3

5.62

4.75

0.77

0

0

4358A, Xf = 4860A, M = He

a 5.6 a

0.61

0.125

0.10

10 3 [NO 2 ],
torr

4.8

9.2

17

34

50

5

11

17

36

74

5

9.5

17

32

48

68

6/a, torr-
1

0.38

0.25

0.025

0

0

1.5

0.25

0.26

0.138

0.013

4.2

12

36

75

0.565

0.41

0.45

0.096

0.0

0.0

0.34

0.052

0.025

0.04



-20-

Table I: (continued)

t, torr
- 1

8, torr
- 2

Xi = 4358A, Xf = 4860A, M = N2

32.5 6.75

7.1 0.635

4.8 0.30

Xi = 4358A, Xf = 4860A, M = 02

30 90

21.3 9.4

10.6 1.5

5.0 0.75

Xi = 4358A, Xf = 5577A, M = He

15

10.8

5.6

4.0

2.8

Ai =

24

17.4

8.8

7.1

4.6

0.2

0.16

0.06

4358A, Xf = 5577A, M = N2

2.52

1.2

0.92

0.312

10 [N02],
torr

3.88

41

80

5.1

11

30

76

6

13

31

49

71

8

13

33

47

72

8/a, torr - 1

0.208

0.090

0.062

3.0

0.44

0.142

0.150

0.036

0.04

0.02

0.145

0.136

0.130

0.068
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(continued)

a, torr
- ! a, torr- 2

Xi = 4358A, Af = 5577A, M = 02

32

19

13.2 2.1

8.0 0.4

5.5 0.18

6/a, tporr
-

l

0.16

0.05

0.033

4358A, Af = 6300A, M = He

3.8

0.17

0.125

0.116

0.0105

0.0

4358A, Af = 6300A, M = N2

6.6

2.1

1.4

1.06

0.22

0.083

0.0

Table I:

103[N02],
torr

5

12

28

47

69

6

11

15

26

39

49

67

78

0.38

Ai =

13

10

10

6.2

4'.5

3.8

3.2

2.4

Ai =

23.4

11.7

9.8

8.2

5.7

5.5

3.8

5

14

27

39

53

63

75

0.03

0.028

0.03

0.003

0.0

0.282

0.179

0.143

0.129

0.04

0.015

0.0
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Table I: (continued)

C, tortr- 1 , torr- 2

Xi = 4358A, Xf = 6300A, M = 02

18

1.77

0.23

0.06

4800A, Xf = 5577A, M = He

12.4

8.3

3.04

1.25

0.16

4800A, if = 5577A, M = N2

35.2

4.3

2.62

1.22

4800A, Af = 5577A, M = 02

162

1.35

1.18

103[NO2],
torr

6.6

13.9

45

66

12.8

7.2

4.4

Xi =

20

15

4.2

8.8

20

43

71

10.2

5.7

3.0

i =

125

18.2

5

9.8

24

36.7

71

B/a, torr -
1

0.138

0.032

0.0135

0.62

0.55

0.30

0.22

0.05

1.94

0.374

0.254

0.305

6.5

0.29

0.35

11.5

10.3

4.0

Xi =

253.6

48

74

4.6

3.4
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Table I: (continued)

trr 1 a, torr- 2

Xi = 4800A, Af = 6300A, M = He

15 20

11.7 5.5

5.0 1.2

4.0 0.1

3.0 0.0

X
i = 4800A, Xf = 6300A, M = N2

25 214

19.2 13.0

12.3 7.8

8.7 1.6

Xi = 4800A, Xf = 6300A, M = 02

26 31.8

23 17.2

9.5 5.25

7.8 1.82

7.5 0.75

4.25 0.62

a) based on [He] < 10 torr.

103[N02],
torr

5

9

45

56

70

4.6

11

18

36

5

9.6

17

40

48

74

s/at, torr-
1

1.33

0.47

0.24

0.025

0

8.6

0.68

0.64

0. 18

1.22

0.75

0.55

0.23

0.10

0.14
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DISCUSSION

Three studies2' 8' 9 of the radiative lifetime are in reasonable agree-

ment. Both Neuberger and Duncan and Keyser et al.8 found no dependence

of the radiative lifetime with either incident or emitting wavelength.

Schwartz and Johnston9 found about a factor of two change with incident

wavelength. However this is not a significant deviation and may be within

the experimental uncertainty. All investigators have concluded that the

fluorescence comes from a single electronically excited state, and we

concur.

There now exists overwhelming evidence that the fluorescence does

not follow a simple one-state Stern-Volmer mechanism. First, the self-

quenching Stern-Volmer plot deviates from linearity at NO2 pressures

below 0.005 torr. Furthermore a red-shift in the emission spectrum

occurs as the NO2 pressure is increased. Second, both the self-quenching

and the foreign gas quenching constants depend on the fluorescence wave-

length for a given incident wavelength. This only can be interpreted in

terms of different emitting states being involved at the different emitting

wavelengths. Third, our work now shows that foreign-gas quenching does

not obey the simple Stern-Volmer law. In accordance with the:ideas of

the Kaufman group 7 8 and Schwartz and Johnston, 9 fluorescence must be

occurring from several vibrational levels of a single electronic state.

The important remaining question is whether the absorbing and

emitting electronic states are the same. If the radiative lifetime com-

puted from the integrated absorption coefficient is different from that

measured directly, as seems to be the case, then the two electronic

states must be different. Douglass argues that the long observed life-

time is due to coupling with vibrational levels of other electronic



states. Thus he explains the long lifetime as being due to the ratio of

the vibrational degeneracies of the coupled states. Clearly this ratio

must be a strong function of both Xi and Xf, and the-observed-radiative

lifetime should change markedly with both Xi and Xf (perhaps by as much

as a factor of 100), contrary to the experimental findings. Thus-Douglas'

explanation fails.

Sakurai and Broida l° have pointed out that the radiative lifetime

computed from the integrated absorption coefficient could be 10- 5 sec,

or within a factor of 5 of that observed. This discrepancy still seems

too large, but perhaps is within the experimental uncertainty. Thus we

shall first consider the possibility now in vogue, i.e. the absorbing

and emitting electronic states are the same, and show that this-possibility

also fails for kinetic reasons.

One electronically excited state-mechanism:

In order to simplify the discussion we will consider only two

vibrational levels, NO2* and NO2** of the excited electronic level-.- Thus

some quantitative results will represent average values, but the:qualita-

tive arguments will be unaffected. The N02* state corresponds to the

energy level initially formed on absorption. The state N02** corresponds

to lower vibrational levels, more or less the lowest energy levels that

can emit at any \f. Thus NO 2** corresponds to low-lying, but different

vibrational levels for the various Xf. Consequently quenching constants

for N02 ** are different at different Xf. The generalized mechanism is

NO 2 + hv NO2* Rate = Ia

NO2 * + NO2 + hv la

+ NO2 lb

N02*+ N+ NO2 NO2 ** + NO2 2a

25-
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- 2N02 2b

N02* + M - N02** + M 3a

+ NO2 + M 3b

N02 ** + NO2 + hv 4a

+ N02 4b

N02** + N0 2 + 2N02 5

N02** + M + NO2 + M 6

Fluorescence can occur from both N02* and N0 2**. The expression for

the relative emission yield in the absence of foreign gases, Qo, is

£[NO2] = (kl + k2 [NO2])(k4 + k5 [NO2])IV

Qo kla(k 4 + k5 [NO2]) + k4ak2a[N02]

where kl E kia + kib, k2 E k2a + k2b, etc. This expression is not of

the Stern-Volmer form, since emission occurs from two states, and conforms

to the findings at low NO2 pressure. s 9
However as the NO2 pressure is

raised, reaction 1 is rapidly quenched, and eqn. IV reduces to

N02] = (k2/k2ak4a)(k4 + ks[NO2 ]) V
Qo

which is the Stern-Volmer expression and conforms to Figs. 1 and 2.

Since this expression holds for [NO2] > 0.005 torr, k2 [N02] >> kl at

this pressure. Assuming k2 % 5 x 1011 M - 1 sec- 1, and since kl = 2 x 104

sec- 1, k2 [NO2]/kl = 6.7 at [NO2] = 0.005 torr. Thus this mechanism is

acceptable if reaction 2 proceeds on every collision.

In the presence of foreign gases, the general expression for Q is

E[N02] _ (kl + k2[N02] + k3 [M])(k4 + ks[NO2] + k6 [M])

Q kla(k4 + ks[NO2] + k6[M]) + k4a(k2a[N02] + k3a[M])

but for pressures > 0.005 torr, reaction 1 is quenched and eqn. VI

reduces to

C[N02] _ (k2 [N02] + k3 [M])(k4 + ks[N02] + k6[M])
Q k4a(k2a[N02] + k3a[M])
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Now the ratio Qo/Q must satisfy eqn. III in order to fit the experi-

mental facts. This will only be the case if k3a[M] << k2 a[NO2] and if

either k3[M] << k2[N02] or k6[M] << k5[NO2]. In the former case, upper

vibrational levels are extremely efficiently quenched by NO2, but not by

M, whereas the lower vibrational levels are quenched equally or more

efficiently by M than NO2. In the latter case the reverse is so but

k3a[M] must still be negligible compared to k2a[NO2]. In either case it

is difficult to understand the inversion in quenching efficiency between

NO2 and M as a function of vibrational level. On this basis, we conclude

that the one electronic state mechanism cannot be operative.

Two electronically excited state mechanism:

It is our conviction that the electronically absorbing and emitting

states must be different. Presumably the absorbing state is 2B1 as

shown by Douglas and Huber,l4 whereas the emitting state, is 2B2, as

shown by Abe et a11 6

The two vibrational level simplification of the mechanism.we envision

is

NO2 + hv + NO2* Ia

N02* + (NO2**)n 7a

+ NO 2 7b

NO2* + NO2 + 2NO2 8

N02* + M + N0 2 + M 9

(NO2**)n - NO2 (+ hv) 10

(NO2**)n + NO2 + (NO2**)m + NO2 lla

+ 2N02 llb

(NO2**)n M + M (NO2**)m + M 12a

+ NO2 + M 12b
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(NO2**)m + NO2 + hv 13a

+ NO2 13b

(NO2**)m + NO2 + 2N02 14

(NO2**)m + M + NO2 + M 15

where N02* is the electronic state produced by light absorption, (NO2**)n

is a highly vibrationally excited level of the emitting electronic state,

and (NO2**)m represents low-lying vibrational levels of the emitting

electronic state. The energies of NO 2* and (NO2**)n are the same,

whereas the lower lying (NO2**)m is the lowest lying energy level that

can emit at any Xf; thus (NO2**)m is different at different Af even if

Ai is the same.

Emission from (NO2**)n accounts for the deviation in the Stern-

Volmer plots below 0.005 torr pressure. Under our conditions it is

negligible, and reaction 10 can be ignored.

The rate constant for reaction 7 must be considerably larger than

that for radiation of NO2* (<4 x 106 sec-1). Thus k7 is almost surely

>107 sec- l. Since k8 cannot be greater than collision frequency, i.e.

45 x 10l l Ml sec-l , reaction 8 is always negligible at our NO2 pressures

(<0.080 torr).

The mechanism leads to a complex rate law. For simplicity-we-assume

that klla/kll=kl2a/k12=Y. This simplification is not required for the

mechanism to be valid, but it does reduce mathematical manipulations.

With this simplification, and neglecting reaction 8 and 10, the rate

law in the absence of M becomes

yc [NO2]/Qo = k7(kl3 + k 4 [NO2])/k7akl3a VIII

Plots of [NO2 ]/Qo vs. [NO2] are shown in Figs. 1 and 2, and they are

linear as predicted by eqn. VIII. The ratio of slope to interceptsgives
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kl4/kl3, and these values are listed in Table II for each Xi and Xf.

They range from 60 to 175 torr 1l, the values increasing with Xi.

In the presence of a foreign gas the rate law becomes

(Qo/Q-l) sk + kg kskls[M]
[M] - k13 + k1 4 [N02] k7 k7 (kl 3 + kl4 [N0 2])

Eqn. IX has the same form as eqn. III, and thus conforms to the experi-

mental results with

k1 5 + k
k1 3 + k1 4[N02] k7

=_ k1 5

k7 (k1 3 + k1 4 [NO2])

If kg/k7 is negligible compared to k1 5 /(kl3 + k1 4 [N02 ]), then

al = (k1 3 + k1 4 [NO2])/k1 5

and plots of a1- vs. [NO2] should be linear. Such plots are- shown

in Figs. 9-11, and they are linear in every case. The intercepts

give kl 3/kls, the slopes give kl4/k15, and the ratio of slope to inter-

cept gives kl4/kl 3. These values are tabulated in Table II for each Xi

and Af.

The values for kl4/k,3 obtained from the foreign gas-quenching

experiments agree well with each other and with the values obtained

from the NO2 self-quenching experiments. Furthermore they also agree

reasonably well with the values obtained in Kaufman's laboratory (also

listed in Table II), except for Xi = 4047A and Xf = 5577A. Even here

the discrepancy is only about a factor of 2 - 3. Since kl3 % 2 x 104

sec-1 and k14/k13 % 100 torr-1 , k14 % 4 x 1010 M'1 secl1 which

corresponds to deactivation about once in every 10 collisions.

The ratio kl4/k15 gives the relative efficiency of N02 and M as

quenching gases for (NO2**)m. The relative efficiencies are about the

same at all Xi and Xf and follow the trend expected, i.e. the efficiency
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Table II

Rate Constant Ratios

k 1 3 /kl 5 ,

kl4/kls torr

Xi = 4047A, Xf = 5577A

5.0 0.11

3.4 0.055

3.4 0.08

Source

Eqn. VIII, Fig. 1

Eqn. X, Fig. 9

Eqn. X, Fig. 10

Eqn. X, Fig. 11

Keyser et al. 8

Xi = 4047A, Xf = 6300A

Eqn. VIII, Fig. 1

Eqn. X, Fig. 9

Eqn. X, Fig. 10

Eqn. X, Fig. 11

Keyser et al. 8

Xi = 4358A,

4.65

2.66

2.4

Xf = 4860A

0.04

0.02

0.02

Eqn. VIII, Fig. 1

Eqn. X, Fig. 9

Eqn. X, Fig. 10

Eqn. X, Fig. 11

Keyser et al. 8

Myers et al.7

M
k1 4/kl3,
torr

- 1

None

He

N2

02

60

44

36

43

%x110

None

He

N2

02

73

67

66

56

%75

4.15

2.58

2.5

0.063

0.046

0.038

None

He

N2

02

140

116

133

120

%200

%130
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Table II: (continued)

k1 3/kls,
kl4/kis torr

Xi = 4358A, Xf = 5577A

4.4 0.04

2.65 0.024

2.3 0.02

Source

Eqn. VIII, Fig. 1

Eqn. X, Fig. 9

Eqn. X, Fig. 10

Eqn. X, Fig. 11

Keyser et al. 8

Myers et al. 7

Xi = 4358A, Xf = 6300A

Eqn. VIII, Fig. 2

Eqn. X, Fig. 9

Eqn. X, Fig. 10

Eqn. X, Fig. 11

Keyser et al. 8

Myers et al. 7

Xi = 4800A, Xf = 5577A

4.15 0.023

3.42 0.018

3.8 0.025

Xi = 4800A, Xf = 6300A

4.25

2.8

2.82

0.028

0.024

0.02

Eqn.

Eqn.

Eqn.

Eqn.

Eqn.

Eqn.

Eqn.

Eqn.

VIII, Fig. 2

X, Fig. 9

X, Fig. 10

X, Fig. 11

VIII, Fig. 2

X, Fig. 9

X, Fig. 10

X, Fig. 11

M

None

He

N2

02

kl4/kl3,
torr 1

103

110

110

115

4120

%70

None

He

N2

02

91

86

93

95

%80

50

4.3

2.8

2.83

0.05

0.03

0.03

None

He

N2

02

175

180

190

146

None

He

N2

02

140

150

115

141
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increases with molecular complexity. Thus the relative efficiencies are

about 0.22/0.35/0.35/1.00 for He, N 2, 02, and NO2 respectively in good

agreement with the values of 0.29/0.44/0.48/1.00 found by Myers et al. 7

Our results also agree with those of Baxter6 who found the quenching

efficiencies to be 0.42/0.33/1.00 for N2, 02, and NO2 , respectively.

The ratio /at should give kg/k 7. These values are listed in Table I

for each NO2 pressure at each Xi and Xf. First it should be noticed that

in every case /ca << a, i.e. kg/k7 < < k1 5 /(k1 3 + k1 4 [N0 2]), as assumed

earlier. In the worst case 1/a X 0.25a, but usually B/a < 0.l1a and

often very much less.

However /ca is not a constant independent of [NO2] as expected.

In fact B/a drops as [NO2] increases at every Xi and Xf. Thus either

kg or k7 or both has some functional dependence on [NO2]. It cannot be

k7, for then linear Stern-Volmer plots would not have been obtained for

self-quenching in the absence of foreign gases. Thus kS must beta com-

plex reaction. Since k7 > 107 sec-
1 and kg/k7 % 1 torr-l, ks > 10'l

M -1 sec-1; reaction 9 is a very efficient quenching reaction.- Perhaps

it involves quenching to even a third electronic state (a quartet?)

which can emit radiation. At present we have no explanation for this

anomaly, but it together with the deviation from linearity of Fig. 6

at very high He pressure suggest that even two excited electronicsstates

may not be sufficient to explain the photophysical processes accompanying

light absorption by NO2.
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